Modern Graphics Engine Design
Sim Dietrich
NVIDIA Corporation
sim.dietrich@nvidia.com

Overview

< Modern Engine Features
< Modern Engine Challenges

< Scene Management
< Culling & Batching

< Geometry Management
< Collision Structures

< Shader Systems
(=

< Example Engine Design ﬂVfDIA,

Modern Graphics Engine Features

< High polygon count for added visual complexity
< Not just to make things ‘smoother’

< Some form of bump mapping for more surface detail
< From single-light dot3

< To general diffuse / specular / aniso per-pixel
lighting

< Some form of shadows
< From simple blobby discs under characters

< To full shadow map or shadow volume for each
light

<
|

BVIDIA.

More Features

< Particle system for splashes, sparks, etc

< Decal System for blood, scorch marks, etc.

< Performance & Visual Scalability
< Game should look good on the newer cards
< 1280x1024 x 4X AA + 4X Aniso

< Game should look ‘ok’ on the older cards
< 800x600 x 2X AA

< And run well on both at the appropriate resolution
and Anti-Aliasing settings

2
NVIDIA.

Challenges

< To get achieve visually rich scenes, there must
be several visually interesting objects

< To get acceptable frame rates, the number of
draw calls in a frame should be low

< < 500 per frame for good frame rates

< This is a CPU limitation

< The API & Driver must do a little work every time you
make a render call to draw something

< Many calls doing a little CPU work add up to a lot of
CPU work

2
NVIDIA.

Challenges

< Complexity
< Modern engines are able to lose some complexity
compared to engines a few years ago
< Software Transform
- Software Rasterization

< But, there are plenty of new things to worry about
< High poly-count worlds in low memory
< Realistic characters & animation
< Shader Management
< High Framerates

2
NVIDIA.

Scene Mangement

< There are about 5 different game engine sections
that need access to the geometry in the scene

< Culling

< Rendering
< Collision
<~ Decals

< Al

<

BVIDIA.

Scene Management

< Culling — View Frustum Culling

< Also from light’s point of view for some shadow
approaches

< Rendering

< May need to render from multiple points of view for
radar, shadows, etc.

< Collision
< May be simplified version of the rendered geometry
<~ Decals

< If these are done by re-rendering scene triangles, need
per-triangle collision

< Al
< The computer needs some spatial awareness
< For path-finding, tactical understanding, etc.

o
|

BVIDIA.

Scene Management - Culling

< Goal : To quickly identify groups of triangles that can
be culled out efficiently

< Typically inside a bounding volume
- BSP Leaf, Sphere, Bounding Box

< There is a tradeoff between culling efficiency and CPU
efficiency :

< The ultimate culling efficiency would cull each
triangle individually

< The ultimate CPU efficiency would draw the entire
world in one draw call

< The trick is to group most of your scene in large, easy- 2

BVIDIA.

to-cull chunks

Scene Management - Culling

< In this scene, a
world section is
broken into a grid
with ~300 triangle
cells

< Highlighted area
represents one
such 3D Cell

< Probably too few
tris for CPU batch
efficiency

HAL (pure hw wpj:

Press 'Fz' to configure display

Press 'F2" to configure input

Hold "F5' down to play and repeat a séuﬁ'i:l
b

Use arrow key=s or joystick to rotate object

Left/Right Axis: T Up/Down Axis: T s iﬂ-‘.:&-' .

Scene Management - Culling

< Make bounding boxes too small, and clipping
creates many extra triangles & vertices

< Make bounding boxes too large, and you end up
sending down too much off-screen geometry

< Can also create per-material AABoxes

< Instanced Geometry

< Store a Axis-Aligned Bounding box, AA Cylinder or
Sphere for each Instance for culling

< Don’t cull individual bone groups except for very z
expensive and close-to-camera characters $l
RVIDIA.

Scene Management - Culling

< Particle Systems

< Store a bounding volume for each group of
particles

< Cull entire group as a unit
< Also try to draw as a unit for efficiency

< If particles don’t affect gameplay, can also avoid
calculating off-screen systems

A

+ | [FK
"y x WA

<
e |

BVIDIA.

Scene Management - Decals

< There are several popular approaches for
creating decals for bullet holes, scorch marks,
blood drops, etc.

< One approach renders little pieces of geometry to
represent the bullet hole, etc.

< Upside : Low fillrate for small decals

< Downside : Needs to be clipped so that it doesn’t
hang over a corner

< Downside : May Z fight with geometry, need bias
2
BVIDIA.

Scene Management - Decals

< Another method uses texture mapping to apply
the decal by re-rendering scene polygons with
the texture applied

< Upside : No need to clip to corners

< Upside : No depth fighting if you use the exact
same geometry as used for rendering

< Downside : Large polygons cost fillrate for many
decals

2
NVIDIA.

Scene Management - Decals

< Either approach requires finding the exact
triangles the decal touches

< Either for clipping the geometry decals to the
scene geometry

< Or re-rendering them with the decal texture

< Therefore, the engine must support being able to
quickly find a group of nearby polygons on which
to apply the decal

< This has implications for the collision system...
<

BVIDIA.

Scene Management - Decals

< Highlighted area
indicates triangles
possibly covered by
decal shadow

< Amount of extra
fillrate burned is more
for less-tessellated
geometry

< So, more vertices can
save fillrate on decals

Scene Management - Collision

< Efficient collision with world & mesh data is a
challenge in a modern engine

< Many more polygons for required visual richness

< Standard BSP approaches won’t cut it

< Only for very simple walls & floors will a leaf-based
BSP suffice

< The more polygons in the scene, the greater the
penalty for splits

<
|

BVIDIA.

Scene Management - Collision

< One of the main problems with a standard BSP or KD-Tree (
axis aligned BSP) is the depth of the tree

< Consider every time you follow a pointer, you can assume a
CPU cache miss

< The deeper your tree, the more cache misses you will
take

< Cache misses can be more expensive than intersection
tests

< Therefore, shallower tree types will perform better on
high-polygon-count scenes

< Two ways to make a tree shallow :

< High Branching Factor — QuadTree, Octree
2 More children per node T

< Store multiple items in one Leaf ﬂvaIA,

Scene Management - Collision

2 This KD-Tree or BSP has 2 < The Quadtree only
levels, the leftmost root and also needs 2 levels for
the rightmost children this scene

AA |

A

A

A

Scene Management - Collision

< Of course, if the scene is arranged differently, the
KD tree or BSP tree can cope better by adjusting
where the split planes go.

< Standard Quadtrees and Octrees don’t do this, so
require more levels. Variations with rectilinear
cells, as on the right, can cope better

A

A

A

A

A

A

A

A
A

RVIDIA.

Scene Management - Collision

< An alternative is the Axis-Aligned Bounding Box
Tree

< Good example in Game Programming Gems 2
< Also Short Tutorial on FlipCode

<~ This Tree contains a hierarchy of AA Bounding
Boxes which contain all of the geometry

< The AABox Tree is not meant to represent empty
space like a grid, but instead to just tightly
contain the triangles

2
NVIDIA.

Scene Management - Collision

< The basic idea is to somehow divide the # of
triangles in a node in half at each step, but without
clipping them to the Split Plane

< Root Node

< Dashed line is
Split Plane

<

BRVIDIA.

Scene Management - Collision

< The triangle centroid is compared to the ‘Split
Plane’

< This way each triangle only lives in one node

< No clipping to increase polycounts
< Important for collision more than for rendering

< Left Child
in Blue

< Right Child
in Red

< Dots are
Triangle
Centroids

Scene Management - Collision

<~ Each node in tree contains a Axis-Alignhed
Bounding box, and two children

<~ Each child may be a Node or a Leaf
< Leafs contain the triangle data or triangle ids

<~ Can create tree down to individual triangle level

< Requires compression of nodes & bounding boxes
to avoid too much memory — see GPG2

< Alternatively create down to a small # of triangles
per leaf, like 8 — 20

< All triangles in leaf will be nearby in memory

< Argues against storing tri ids, and just vertex
indices

2
NVIDIA.

Scene Management - Collision

< The ‘Split Plane’ must be intelligently chosen to
create a nicely balanced tree

< One approach is to create the AABB tree top-
down

< Create a parent node and find the AABox
containing all triangles

< Split the node somehow into two children
< Each child gets some of the triangles
< Each child’s AABox may overlap its sibling

< Recurse into each child until
< The # of triangles is small enough

2
NVIDIA.

< Or the volume of the AABox is small enough

How To A Node Split into 2 Children?

< A good approach is to pick the largest axis of the
AAbox containing all triangles In the parent node

<~ Then sort the triangles by their centroid with
respect to the AABox’s largest axis

< A tall AABox would have its triangles sorted by
centroid.y

< Now you can go through exactly half the triangles
in the sorted list and give them to the left child,
and the assign the rest to the right child

< This gives a median distribution, which
guarantees a O(log n) search time <
RVIDIA.

Scene Management - Collision

< Modern engines will increasingly use non-
splitting, looser trees with larger numbers of
triangles per leaf

< Looser trees, like AABB Trees, and loose Octrees
don’t split, so they don’t increase collision polys
needlessly

< A dozen or so triangles per leaf reduce cache
misses and amortize the memory cost of the
bounding box and node information <>

BVIDIA.

Scene Management - Al

< The Al also needs some view of the scene

< But it should be probably be separate from the
rendering & collision views of the world

< Should probably a simpler, more symbolic view of
the world than a collision structure

< The Al will use raycasting and other spatial
queries, so this should be fast

< Line Of Sight
< Enemies In Range

2
NVIDIA.

Scene Management - Rendering

< Question : What is the most expensive render state
change?

<

RVIDIA.

Scene Management - Rendering

< Question : What is the most expensive render
state change?

< Answer : The one that caused you to make more
draw calls.

<

BVIDIA.

Scene Management - Rendering

< Question : What is the most expensive render
state change?

< Answer : The one that caused you to make more
draw calls.

< In general, sort by the item with the most useful
coherency.

<

BVIDIA.

Scene Management - Rendering

< You can use the GPU to reduce the number of draw
calls needed for your scene.

< Use per-vertex data to encode shading parameters
< Reduces need to set vertex shader constants
< Reduces need to switch vertex shaders

< Example : Indexed Palette Skinning

< ldea : Apply per-vertex index to other things like z
lighting, occlusion, etc. $l

RVIDIA.

Scene Management - Rendering

< Use textures to encode shading parameters
< Reduces need to set pixel shader constants
< Reduces need to switch pixel shaders

< Example : Put gloss into the alpha of your normal map,
instead of setting it via SetPixelShaderConstant()

< ldea : Encode 4 light occlusion terms into a lightmap,
and draw all 4 shadowed lights in one pass

<
|

BVIDIA.

Lighting and Shadows

< Your choices for Lighting and Shadowing will
largely dictate the look and speed of your game
<~ How dynamic is your lighting?
< Totally Static
< Precompute per-vertex or lightmaps
< Partially Dynamic
< Lights can change color & intensity, but can’t move
< Build per-light occlusion term into vertex or texture
< Totally Dynamic

< Perform plenty of CPU raycasting for shadowing

< Use GPU-assisted shadows like shadow maps or
shadow volumes T

BVIDIA.

Lighting Tradeoffs

Technique |CPU Cost |Vertex Cost | Pixel Cost | Comment
Static Low, if Low Low Any # of
Lightmaps |using lights and
texture shadows
pages free
Dynamic High, at Low Low More lights
Lightmaps |least when cost during
light updates
changes
Dynamic Prohibitive |Low Low Too many
Lightmaps raycasts for
w/ CPU
Shadows

<
NVIDIA.

Lighting Tradeoffs

Technique | CPU Cost | Vertex Pixel Cost | Comment
Cost
Occlusion |Low, if Low Medium Limits # of
Maps using lights to 4
texture or so
pages
Per-Vertex | Low Medium Low Lights Can
Occlusion only
change
color
Stencil High, for Low High Limited to
Shadows | batch 3 lights per
on CPU count and surface
silhouettes):

BVIDIA.

Lighting Tradeoffs

Technique | CPU Cost | Vertex Pixel Cost | Comment
Cost
Stencil Medium for | Very High | High Limited to
Shadows | batch size 3 lights per
on GPU surface
Depth Low Medium Medium Aliasing
Shadow Artifacts
Maps
PRT via Low Medium Low Only
Spherical infinite
Harmonics lights & no
animation

<
e |

BVIDIA.

Shader Management

< There are two main ways to handle shaders,
depending on your type of game

< Open-Ended - Artist-driven from within the level
editor

< Highly Flexible
< Use HLSL / .FX files to manage complexity

< Somewhat Complex to support many shader types
< Use Annotations to identify shader parameters

< Can create explosion of shaders if not careful

< Switching shaders often is not good for reducing
draw calls (=

BVIDIA.

Shader Management

< Unified Shader Model — Driven from the Engine
Capabilites and/or Game Needs

< Fewer, more specific, optimized shaders

< Practical to do C++ coding to set up shaders
< Can still use .fx files, but not needed as much
< Shaders are from a more limited set of choices

< Good for higher framerates by limiting maximum # of
draw calls due to shader changes

< Must build shader parameters into geometry &
textures to get the speed benefit

2
NVIDIA.

Questions So Far?

B#VIDIA.

Test Engine Overview

i 00800 . i
H P
t
3 r
- 5 i
4 3 :
! .}
X
Ir
A
A
sy |
- % t
5 Al b]

=
BVIDIA.

Test Engine - Overview

< Top level of the scene is a 3d Grid of 16x16x16
meter cells

< Triangles are clipped to the grid
< Each Cell has a Vertex and an Index Buffer

< AABBTree of collision triangles matching the
tessellation of the rendering triangles

< Also a vector of material records
< Contains Index Buffer range for triangles
<~ Contains AABox for triangles with material
< List of Moving Entities
<~ Contains AABox
< Contains reference to mesh data for rendering only@_-j/\,\

BVIDIA.

Test Engine - Overview

< Advantage to breaking the world into large cells
< Efficient for culling

< Can share same VB and IB without going over 65K
vertex or triangle limits

< Can use 16-bit indices for IB
< Can use 16-bit indices for AABB tree

< Can compress AABB boxes in tree to 16 or 8 byte
per axis and still have good precision

< Can more quickly reject moving entities in other
cells

< Can restrict lighting to only 7 lights per tile

2
NVIDIA.

Many Features, Few Draw Calls

< An entire world cell is drawn in one draw call
< Up to 7 Lights
< Diffuse & Specular Bump Mapping
< Soft shadows
< Gloss-Mapped, Color Shifted Specular
< Masked Emissive
< Water or Fog Depth stored in Dest Alpha

< Fog, Mist and Water are a partial alpha pass
< Blend in fog layer colors based on dest alpha

<

BVIDIA.

Shadows & Deep Water

Test Engine - Lighting

< Shadows for world geometry are pre-calculated
for up to 7 lights

< Per-Light occlusion terms are stored in
diffuse.rgba and specular.rgb per vertex

< The vertex shader calculates the 7 L vectors

< Scales the L vectors down by the occlusion &
attenuation terms

< Performs per-vertex N.L

< Adds up scaled L vectors ci’)’;
BVIDIA.

Averaged L Bump Mapping

< The Pixel Shader uses this averaged L vector to
perform bump mapping — ‘Averaged L Bump
Mapping’

< Bump mapping is nice, but not worth it to do for
many lights

<~ This way, if lights change intensity or turn on and
off, the bumps respond to the most intense lights

< The bump mapping still corresponds to the
scene’s lighting, but no need to do up to 7
rendering passes for 7 lights

2
NVIDIA.

Averaged L Vectors for

“Averaged

L Bump Mapping”
we crur SR

Metallic Specular

M5 fps (800x800x32) (D16)
[pure hw wp):

Questions?

