
Modern Graphics Engine DesignModern Graphics Engine Design
Sim Dietrich

NVIDIA Corporation
sim.dietrich@nvidia.com

Overview
Modern Engine Features

Modern Engine Challenges

Scene Management
Culling & Batching

Geometry Management
Collision Structures

Shader Systems

Example Engine Design

Modern Graphics Engine Features

High polygon count for added visual complexity
Not just to make things ‘smoother’

Some form of bump mapping for more surface detail
From single-light dot3
To general diffuse / specular / aniso per-pixel
lighting

Some form of shadows
From simple blobby discs under characters
To full shadow map or shadow volume for each
light

More Features

Particle system for splashes, sparks, etc

Decal System for blood, scorch marks, etc.

Performance & Visual Scalability
Game should look good on the newer cards

1280x1024 x 4X AA + 4X Aniso
Game should look ‘ok’ on the older cards

800x600 x 2X AA
And run well on both at the appropriate resolution
and Anti-Aliasing settings

Challenges

To get achieve visually rich scenes, there must
be several visually interesting objects

To get acceptable frame rates, the number of
draw calls in a frame should be low

< 500 per frame for good frame rates
This is a CPU limitation

The API & Driver must do a little work every time you
make a render call to draw something
Many calls doing a little CPU work add up to a lot of
CPU work

Challenges

Complexity
Modern engines are able to lose some complexity
compared to engines a few years ago

Software Transform
Software Rasterization

But, there are plenty of new things to worry about
High poly-count worlds in low memory
Realistic characters & animation
Shader Management
High Framerates

Scene Mangement

There are about 5 different game engine sections
that need access to the geometry in the scene

Culling
Rendering
Collision
Decals
AI

Scene Management
Culling – View Frustum Culling

Also from light’s point of view for some shadow
approaches

Rendering
May need to render from multiple points of view for
radar, shadows, etc.

Collision
May be simplified version of the rendered geometry

Decals
If these are done by re-rendering scene triangles, need
per-triangle collision

AI
The computer needs some spatial awareness
For path-finding, tactical understanding, etc.

Scene Management - Culling

Goal : To quickly identify groups of triangles that can
be culled out efficiently

Typically inside a bounding volume
BSP Leaf, Sphere, Bounding Box

There is a tradeoff between culling efficiency and CPU
efficiency :

The ultimate culling efficiency would cull each
triangle individually
The ultimate CPU efficiency would draw the entire
world in one draw call

The trick is to group most of your scene in large, easy-
to-cull chunks

Scene Management - Culling

In this scene, a
world section is
broken into a grid
with ~300 triangle
cells

Highlighted area
represents one
such 3D Cell

Probably too few
tris for CPU batch
efficiency

Scene Management - Culling

Make bounding boxes too small, and clipping
creates many extra triangles & vertices

Make bounding boxes too large, and you end up
sending down too much off-screen geometry

Can also create per-material AABoxes

Instanced Geometry
Store a Axis-Aligned Bounding box, AA Cylinder or
Sphere for each Instance for culling
Don’t cull individual bone groups except for very
expensive and close-to-camera characters

Scene Management - Culling

Particle Systems
Store a bounding volume for each group of
particles
Cull entire group as a unit
Also try to draw as a unit for efficiency
If particles don’t affect gameplay, can also avoid
calculating off-screen systems

Scene Management - Decals

There are several popular approaches for
creating decals for bullet holes, scorch marks,
blood drops, etc.
One approach renders little pieces of geometry to
represent the bullet hole, etc.

Upside : Low fillrate for small decals

Downside : Needs to be clipped so that it doesn’t
hang over a corner

Downside : May Z fight with geometry, need bias

Scene Management - Decals

Another method uses texture mapping to apply
the decal by re-rendering scene polygons with
the texture applied

Upside : No need to clip to corners

Upside : No depth fighting if you use the exact
same geometry as used for rendering

Downside : Large polygons cost fillrate for many
decals

Scene Management - Decals

Either approach requires finding the exact
triangles the decal touches

Either for clipping the geometry decals to the
scene geometry
Or re-rendering them with the decal texture

Therefore, the engine must support being able to
quickly find a group of nearby polygons on which
to apply the decal

This has implications for the collision system…

Scene Management - Decals

Highlighted area
indicates triangles
possibly covered by
decal shadow

Amount of extra
fillrate burned is more
for less-tessellated
geometry

So, more vertices can
save fillrate on decals

Scene Management - Collision

Efficient collision with world & mesh data is a
challenge in a modern engine

Many more polygons for required visual richness

Standard BSP approaches won’t cut it
Only for very simple walls & floors will a leaf-based
BSP suffice
The more polygons in the scene, the greater the
penalty for splits

Scene Management - Collision
One of the main problems with a standard BSP or KD-Tree (
axis aligned BSP) is the depth of the tree

Consider every time you follow a pointer, you can assume a
CPU cache miss

The deeper your tree, the more cache misses you will
take
Cache misses can be more expensive than intersection
tests
Therefore, shallower tree types will perform better on
high-polygon-count scenes

Two ways to make a tree shallow :
High Branching Factor – QuadTree, Octree

More children per node
Store multiple items in one Leaf

Scene Management - Collision

This KD-Tree or BSP has 2
levels, the leftmost root and
the rightmost children

The Quadtree only
also needs 2 levels for
this scene

Scene Management - Collision

Of course, if the scene is arranged differently, the
KD tree or BSP tree can cope better by adjusting
where the split planes go.
Standard Quadtrees and Octrees don’t do this, so
require more levels. Variations with rectilinear
cells, as on the right, can cope better

Scene Management - Collision

An alternative is the Axis-Aligned Bounding Box
Tree

Good example in Game Programming Gems 2
Also Short Tutorial on FlipCode

This Tree contains a hierarchy of AA Bounding
Boxes which contain all of the geometry

The AABox Tree is not meant to represent empty
space like a grid, but instead to just tightly
contain the triangles

Scene Management - Collision

The basic idea is to somehow divide the # of
triangles in a node in half at each step, but without
clipping them to the Split Plane

Root Node
Dashed line is
Split Plane

Scene Management - Collision

The triangle centroid is compared to the ‘Split
Plane’
This way each triangle only lives in one node
No clipping to increase polycounts

Important for collision more than for rendering

Left Child
in Blue
Right Child
in Red
Dots are
Triangle
Centroids

Scene Management - Collision

Each node in tree contains a Axis-Aligned
Bounding box, and two children
Each child may be a Node or a Leaf
Leafs contain the triangle data or triangle ids
Can create tree down to individual triangle level

Requires compression of nodes & bounding boxes
to avoid too much memory – see GPG2

Alternatively create down to a small # of triangles
per leaf, like 8 – 20

All triangles in leaf will be nearby in memory
Argues against storing tri ids, and just vertex
indices

Scene Management - Collision

The ‘Split Plane’ must be intelligently chosen to
create a nicely balanced tree
One approach is to create the AABB tree top-
down

Create a parent node and find the AABox
containing all triangles
Split the node somehow into two children
Each child gets some of the triangles
Each child’s AABox may overlap its sibling
Recurse into each child until

The # of triangles is small enough
Or the volume of the AABox is small enough

How To A Node Split into 2 Children?

A good approach is to pick the largest axis of the
AAbox containing all triangles in the parent node
Then sort the triangles by their centroid with
respect to the AABox’s largest axis

A tall AABox would have its triangles sorted by
centroid.y

Now you can go through exactly half the triangles
in the sorted list and give them to the left child,
and the assign the rest to the right child

This gives a median distribution, which
guarantees a O(log n) search time

Scene Management - Collision

Modern engines will increasingly use non-
splitting, looser trees with larger numbers of
triangles per leaf

Looser trees, like AABB Trees, and loose Octrees
don’t split, so they don’t increase collision polys
needlessly

A dozen or so triangles per leaf reduce cache
misses and amortize the memory cost of the
bounding box and node information

Scene Management - AI

The AI also needs some view of the scene
But it should be probably be separate from the
rendering & collision views of the world
Should probably a simpler, more symbolic view of
the world than a collision structure

The AI will use raycasting and other spatial
queries, so this should be fast

Line Of Sight
Enemies In Range

Scene Management - Rendering

Question : What is the most expensive render state
change?

Scene Management - Rendering

Question : What is the most expensive render
state change?

Answer : The one that caused you to make more
draw calls.

Scene Management - Rendering

Question : What is the most expensive render
state change?

Answer : The one that caused you to make more
draw calls.

In general, sort by the item with the most useful
coherency.

Scene Management - Rendering

You can use the GPU to reduce the number of draw
calls needed for your scene.

Use per-vertex data to encode shading parameters
Reduces need to set vertex shader constants
Reduces need to switch vertex shaders

Example : Indexed Palette Skinning

Idea : Apply per-vertex index to other things like
lighting, occlusion, etc.

Scene Management - Rendering

Use textures to encode shading parameters
Reduces need to set pixel shader constants
Reduces need to switch pixel shaders

Example : Put gloss into the alpha of your normal map,
instead of setting it via SetPixelShaderConstant()

Idea : Encode 4 light occlusion terms into a lightmap,
and draw all 4 shadowed lights in one pass

Lighting and Shadows

Your choices for Lighting and Shadowing will
largely dictate the look and speed of your game
How dynamic is your lighting?

Totally Static
Precompute per-vertex or lightmaps

Partially Dynamic
Lights can change color & intensity, but can’t move
Build per-light occlusion term into vertex or texture

Totally Dynamic
Perform plenty of CPU raycasting for shadowing
Use GPU-assisted shadows like shadow maps or
shadow volumes

Lighting Tradeoffs

Low

Low

Low
Pixel Cost

Too many
raycasts for
CPU

More lights
cost during
updates

Any # of
lights and
shadows
free

Comment

LowProhibitiveDynamic
Lightmaps
w/
Shadows

LowHigh, at
least when
light
changes

Dynamic
Lightmaps

LowLow, if
using
texture
pages

Static
Lightmaps

Vertex CostCPU CostTechnique

Lighting Tradeoffs

High

Low

Medium

Pixel Cost

Limited to
3 lights per
surface

Lights Can
only
change
color

Limits # of
lights to 4
or so

Comment

LowHigh, for
batch
count and
silhouettes

Stencil
Shadows
on CPU

MediumLowPer-Vertex
Occlusion

LowLow, if
using
texture
pages

Occlusion
Maps

Vertex
Cost

CPU CostTechnique

Lighting Tradeoffs

Low

Medium

High

Pixel Cost

Only
infinite
lights & no
animation

Aliasing
Artifacts

Limited to
3 lights per
surface

Comment

MediumLowPRT via
Spherical
Harmonics

MediumLowDepth
Shadow
Maps

Very HighMedium for
batch size

Stencil
Shadows
on GPU

Vertex
Cost

CPU CostTechnique

Shader Management

There are two main ways to handle shaders,
depending on your type of game

Open-Ended - Artist-driven from within the level
editor

Highly Flexible
Use HLSL / .FX files to manage complexity
Somewhat Complex to support many shader types

Use Annotations to identify shader parameters
Can create explosion of shaders if not careful
Switching shaders often is not good for reducing
draw calls

Shader Management

Unified Shader Model – Driven from the Engine
Capabilites and/or Game Needs

Fewer, more specific, optimized shaders
Practical to do C++ coding to set up shaders

Can still use .fx files, but not needed as much
Shaders are from a more limited set of choices
Good for higher framerates by limiting maximum # of
draw calls due to shader changes
Must build shader parameters into geometry &
textures to get the speed benefit

Questions So Far?

Test Engine Overview

Test Engine - Overview
Top level of the scene is a 3d Grid of 16x16x16
meter cells

Triangles are clipped to the grid
Each Cell has a Vertex and an Index Buffer
AABBTree of collision triangles matching the
tessellation of the rendering triangles
Also a vector of material records

Contains Index Buffer range for triangles
Contains AABox for triangles with material

List of Moving Entities
Contains AABox
Contains reference to mesh data for rendering only

Test Engine - Overview

Advantage to breaking the world into large cells
Efficient for culling
Can share same VB and IB without going over 65K
vertex or triangle limits

Can use 16-bit indices for IB
Can use 16-bit indices for AABB tree

Can compress AABB boxes in tree to 16 or 8 byte
per axis and still have good precision
Can more quickly reject moving entities in other
cells
Can restrict lighting to only 7 lights per tile

Many Features, Few Draw Calls

An entire world cell is drawn in one draw call
Up to 7 Lights
Diffuse & Specular Bump Mapping
Soft shadows
Gloss-Mapped, Color Shifted Specular
Masked Emissive
Water or Fog Depth stored in Dest Alpha

Fog, Mist and Water are a partial alpha pass
Blend in fog layer colors based on dest alpha

Shadows & Deep Water

Shadows for world geometry are pre-calculated
for up to 7 lights

Per-Light occlusion terms are stored in
diffuse.rgba and specular.rgb per vertex

The vertex shader calculates the 7 L vectors
Scales the L vectors down by the occlusion &
attenuation terms
Performs per-vertex N.L
Adds up scaled L vectors

Test Engine - Lighting

Averaged L Bump Mapping

The Pixel Shader uses this averaged L vector to
perform bump mapping – ‘Averaged L Bump
Mapping’

Bump mapping is nice, but not worth it to do for
many lights

This way, if lights change intensity or turn on and
off, the bumps respond to the most intense lights

The bump mapping still corresponds to the
scene’s lighting, but no need to do up to 7
rendering passes for 7 lights

Averaged L Vectors for “Averaged
L Bump Mapping”

Metallic Specular

Questions?

sdietrich@nivida.com

simmer@spies.net

